
Introduction to AI

Informed Search
Lecture 5

Dr. Tamal Ghosh
Department of CSE
Adamas University

Informed Search: Add
Domain-Specific Information

• Add domain-specific information to select what is the best
path to continue searching along

• Define a heuristic function, h(n), that estimates the
"goodness" of a node n with respect to reaching a goal.

• Specifically, h(n) = estimated cost (or distance) of minimal
cost path from n to a goal state.

• h(n) is about cost of the future search, g(n) past search
(path cost from start to node n)

• h(n) is an estimate (rule of thumb), based on domain-
specific information that is computable from the current
state description. Heuristics do not guarantee feasible
solutions and are often without theoretical basis.

Heuristics
• In general:

– h(n) >= 0 for all nodes n
– h(n) = 0 implies that n is a goal node
– h(n) = infinity implies that n is a dead-end from which a goal

cannot be reached

Best First Search

• Order nodes on the OPEN list by increasing value of
an evaluation function, f(n) , that incorporates
domain-specific information in some way.

• Example of f(n):
– f(n) = g(n) (uniform-cost)
– f(n) = h(n) (greedy algorithm)
– f(n) = g(n) + h(n) (algorithm A)

• This is a generic way of referring to the class of
informed methods.

Best First Search
• Here we have a graph where our aim is to traverse from the

node S to node G
• Create open and close , initally. Open : [S], Closed: []
• First we pop node S and move it to the closed list and the

children nodes are added to open. Open: [B, A], Closed: [S]
• 2nd, the heuristic value of nodes A and B are compared , B is

popped and moved to the closed list. Neighboring nodes of B
are pushed to the open list. Open: [F, E, A], Closed: [S,B]

• 3rd the heuristic values of E, F and A are compared and since F
has lowest heuristic it is added to the closed list.Neighbors of F
are added to the open list. Open: [I,G,E,A], Closed: [S,B,F]

• For the fourth iteration we have our goal node in the open list
hence we select that and move it to the closed list.

• Open: [I,E,A] Closed: [S,B,F,G]
• The path taken is S->B->F->G

Greedy Search
• Evaluation function f(n) = h(n), sorting

open nodes by increasing values of f.
• Selects node to expand believed to be

closest (hence it's "greedy") to a goal
node (i.e., smallest f = h value)

• Not admissible, as in the example.
Assuming all arc costs are 1, then Greedy
search will find goal f, which has a
solution cost of 5, while the optimal
solution is the path to goal i with cost 3.

• Not complete (if no duplicate check)

a

gb

c

d

e

f

h

i

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

Algorithm A
• Use as an evaluation function

f(n) = g(n) + h(n)
• The h(n) term represents a “depth-

first“ factor in f(n)
• g(n) = minimal cost path from the

start state to state n generated so far
• The g(n) term adds a "breadth-first"

component to f(n).
• Rank nodes on OPEN list by

estimated cost of solution from start
node through the given node to goal.

• Not complete if h(n) can equal
infinity.

• Not admissible

S

BA

D
G

1 5 8

3

8

1

5

C

1

9

4

5 8
9

f(D)=4+9=13
f(B)=5+5=10
f(C)=8+1=9

C is chosen
next to expand

(h*(D)=2, h*(C)=2)

Algorithm A
OPEN := {S}; CLOSED := {};
repeat

Select node n from OPEN with minimal f(n) and place n on CLOSED;
if n is a goal node exit with success;
Expand(n);
For each child n' of n do

if n' is not already on OPEN or CLOSED then
put n’ on OPEN; set backpointer from n' to n
compute h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n');

else if n' is already on OPEN or CLOSED and if g(n') is lower for
the new version of n' then

discard the old version of n';
Put n' on OPEN; set backpointer from n' to n

until OPEN = {};
exit with failure

Algorithm A*

• h*(n) = true cost of the minimal cost path from n to any goal.
• g*(n) = true cost of the minimal cost path from S to n.
• f*(n) = h*(n)+g*(n) = true cost of the minimal cost solution

path from S to to any goal going through n.
• A* is algorithm A with constraint that h(n) <= h*(n)
• h is admissible when h(n) <= h*(n) holds for every n.
• Using an admissible heuristic guarantees that the first solution

found will be an optimal one.
• A* is complete whenever the branching factor is finite, and

every operator has a fixed positive cost (total # of nodes with
f(.) <= f*(goal) is finite)

• A* is admissible

Some Observations on A*

• Null heuristic: If h(n) = 0 for all n, then this is an
admissible heuristic and A* acts like Uniform-Cost Search.

• Better heuristic: If h1(n) <= h2(n) <= h*(n) for all non-
goal nodes, then h2 is a better heuristic than h1
– If A1* uses h1, and A2* uses h2, then every node expanded

by A2* is also expanded by A1*.
– In other words, A1 expands at least as many nodes as A2*.
– We say that A2* is better informed than A1*.

• The closer h is to h*, the fewer extra nodes will be
expanded

• Perfect heuristic: If h(n) = h*(n) for all n, then only the
nodes on the optimal solution path will be expanded. So, no
extra work will be performed.

Example 1

• Given an initial state of a 8-puzzle problem and final state to be reached-

• Find the most cost-effective path to reach the final state from initial state using
A* Algorithm.

• Consider g(n) = Depth of node and h(n) = Number of misplaced tiles.

Solution
• A* Algorithm

maintains a tree of
paths originating
at the initial state.

• It extends those
paths one edge at
a time.

• It continues until
final state is
reached.

Example 2

• It is important to note that-
• A* Algorithm is one of the best path-finding algorithms.
• But it does not produce the shortest path always.
• This is because it heavily depends on heuristics.

Iterative Improvement Search

• Another approach to search involves starting
with an initial guess at a solution and
gradually improving it until it is one.

• Some examples:
– Hill Climbing
– Simulated Annealing
– Genetic algorithm

Hill Climbing on a Surface of States

Height Defined by
Evaluation Function

Hill Climbing Search
• If there exists a successor n’ for the current state n such that

– h(n’) < h(n)
– h(n’) <= h(t) for all the successors t of n,

• then move from n to n’. Otherwise, halt at n (local optima).
• A random restart is required to avoid local maxima/minima.
• Looks one step ahead to determine if any successor is better

than the current state; if there is, move to the best successor.
• Similar to Greedy search in that it uses h, but does not allow

backtracking or jumping to an alternative path since it
doesn’t “remember” where it has been.

• OPEN = {current-node}
• Not complete since the search will terminate at "local

minima," "plateaus," and "ridges."

Calculate Manhattan Heuristic for 8 puzzle

• Heuristic function
is Manhattan
Distance

Solution to 8 puzzle problem

1 2
3 4 5
6 7 8

h=0

Initial Goal

Step 1
h=2

h=2

h=3

h=1

h=3

• A solution case.

h=2

h=3

h=1

h=3

h=2

h=0

h=2

h=2

No Admissibility example

• Reference
goal state,
h=0

8 7
6 5 4
1 2 3

h=14 h=13

h=15

h=14

h=14

h=14

Drawbacks of Hill-Climbing
• Problems:

– Local Maxima:
– Plateaus: the space has a broad flat plateau

with a singularity as it’s maximum
– Ridges: steps to the North, East, South and West

may go down, but a step to the NW may go up.
• Remedy:

– Random Restart.
– Multiple HC searches from different start states

• Some problems spaces are great for Hill
Climbing and others horrible.

Simulated Annealing

Simulated Annealing

• Simulated Annealing does not
always pick the move with the
highest score, neither does it
evaluate many moves per step.

• Instead, it gives non-improving
moves also a chance to be picked,
depending on its score and the
time gradient of the Termination.

• In the end, it gradually turns into
Hill Climbing, only accepting
improving moves.

Informed Search Summary
• Best-first search is a general search strategy where the minimum cost open

node (according to some measure) is selected for expansion at each step.
• Greedy search uses minimal estimated cost to the goal state, h(n), as measure.

This reduces the search time, but the algorithm is neither complete nor optimal.
• A* search combines uniform-cost search and greedy search: f(n) = g(n) + h(n)

and handles state repetitions and h(n) never overestimates.
– A* is complete, optimal and optimally efficient (i.e., no other optimal

algorithm expands fewer nodes), but its space complexity is still bad.
– The time complexity depends on the quality of the heuristic function.
– IDA* reduces the memory requirements of A*.

• Hill-climbing algorithms keep only a single state in memory, but can get stuck
on local optima.

• Simulated annealing escapes local optima, and is complete and optimal given
a slow enough cooling schedule (in probability).

Exercise 1

• SOET, Adamas University is preparing a trip for 400 students. The school has 10
buses of 50 seats each and 8 buses of 40 seats but only has 9 drivers available.
The operating cost for the bigger bus is 2000 INR and for the smaller bus is 1500
INR. Calculate how many buses of each type should be used for the trip for the
cheapest possible cost.

Problem Formulation

• Assume we need x larger buses and y smaller buses.
• Our heuristic function is

Min f(x, y) = 2000x + 1500y
Constraints

50x + 40y >= 400
x + y <= 9

1<= x <=10
1<= y <= 8

Exercise 2

• A transport company has two types of trucks, Type A and Type B. Type A has a
refrigerated capacity of 20m3 and a non-refrigerated capacity of 40m3. In
contrast, Type B has the same overall volume with equal refrigerated and non-
refrigerated stock sections. A grocer must hire trucks to transport 3000m3 of
refrigerated stock and 4000m3 of non-refrigerated stock. The cost per kilometer
of Type A is 30, and 40 for Type B. How many trucks of each type should the
grocer rent to achieve the minimum total cost?

	Introduction to AI
	Informed Search: Add �Domain-Specific Information
	Heuristics
	Best First Search
	Best First Search
	Greedy Search
	Algorithm A
	Algorithm A
	Algorithm A*
	Some Observations on A*
	Example 1
	Slide Number 12
	Example 2
	Slide Number 14
	Iterative Improvement Search
	Hill Climbing on a Surface of States
	Hill Climbing Search
	Calculate Manhattan Heuristic for 8 puzzle
	Solution to 8 puzzle problem
	Slide Number 20
	No Admissibility example
	Drawbacks of Hill-Climbing
	Simulated Annealing
	Simulated Annealing
	Slide Number 25
	Informed Search Summary
	Exercise 1
	Problem Formulation
	Exercise 2

